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Condltlons in the bow shock osigin8tlng in hypersonic viecous gas flow past 
a blunt body at,low %gnolds numbers, whiah 8re needed to determine the ln- 
fluenue of the velocity of displacement of the boundary layer on the ex- 
tamal flow, are here considered in a more general fgrmulation than in f l] 
conditiozin on the shoak 8re found by the method of Internal and external 
expan81on6, from whloh the oonditions auustonmrily used on a ehobk,Considered 
as a mathematical tmwfaoe,and the oondltions obtained in 1x3 result 8a par- 
tiaular casea. Thea0 oondltlona are omd, and the rearonsr %mpelling the 
author to consider the condltlona on the shook obtained In [l]are CL- (*). 

3. Just as in Cl], let us cronsider the plane or axIsymmetric problem of 
uniform hypersonic perfect viroous gas flow around a contour (Pig.1). liere 
~a'ia the aontour of the streamlined body; the domain 4 1s the boundary lay- 
er: the domain 2 ia a ahock considered 611 a domain with large gradients of 
thi gas paramsters. - 

It is assumed that an arc of the contour (from the point 0 to the Umiting 
ch~acterlstios of the inviscid flow) ia an inalytio &me; the gas is per- 
feot, i.e., ita equation of state Is P&pT, where p ia the pm?rmure, p the 
density, T the abeolute temperature, R the gas conntant; the speolflo bent 
at conetant pressure 6, and con&ant volume or are oonetantei the Internal 
energy is ev X i the visoosity aoefficiente #.i and A are fun&Jon8 only of 
T; the Pr8ndtl nuder Q ie const&nIi. The g&s flow is deacrlbed by the Navler- 
Stokes equations 8nd ita flow ia laminar, 

We denote the unperturbed flow parameters with the subscript = thue: W-18 
the unperturbed flow Mach number, 0, Is its veloalty. If p,X-rO (o-aonst),then 
the thlclaums of the don&n 2 approaaher eero and the domain 2 approxZmates 
some surfaae &mY (the surface of the shock In the lnvisald problem) without 
llnl%alt. 

Let us introduce an 8,n curvilinear coordlnate system (Fig.1). Here 8 and 
n are measured along the arc 80 and along Its normal. Then if the linear quan- 

*) The author committed an overalght in cl]. The method of charactereticlr 
in the form proposed in [t] fa lnaorreat. In this connection, the author*8 
statement on the uniqueness of the solution of ths problem in the aupersonlc 
part of the flow @round a blunt body,ulth the boundary conditions on the bow 
wave propowd ln [I]-,is false. 1. N. lfur#inov mentioned these f8cte to the 
suthor . 
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titles are referred to the radius of curvature a of the body at the Point 0, 
the gas velocity to U,, the pressure to ~,,,p_ 
the density to po. the temperature to [- 2~ -1: 
the entropy and ehthalpy of the gas toFp l"and 
~.,respectlvely, the viscosity coefflclents to 
the value of )r at 1 = u,zcp-l, , then the con- 
tinulty,momentum, energy equations and the 
equation of state of the gas in the chosen co- 
ordinate system,are written in the form Presen- 
ted in 12 and 13. Let us consider [l] to be 
known. The parameter,characterlzlng the effect 
of the viscous force.is 

&= 

Here A, Is the Reynolds number of the unper- 
turbed flow. 

Fig.1 

a. The solution of the Navler-Stokes equations In domain (3) will be 
represented by asymptotic expansions 123 of the form 

f = F, (s, n) + EFI (s, n) + . . . (2.1) 

where Y la understood to atand for the quantities P,p,u,U,T; here u,zJ are the 
velocity component8 in the direction of Increasing 8 and n, respectively; 

are parameters of the solution of the invlscld problem; the terms 
characterfze the influence of the "velocity of displacement" of the 

boundary 1 ayer . 
To find the terms F (8,n) it 18 necessary to obtain conditions on the 

shock (n-0) for them. be meLhod of "internal and external" ex anslons 
P 

was 
utilized to aolve this problem in 111. Expanalons of the form 2.1) were taken 
for u,v,p,p,T in domains 1 and 3 in Flg.1.; these are the neXternalW solutlon. 
In contraat to Cl], let ua aaaume that although the shock "thickneas",the do- 
main 2, is a quantity 0 
ahlfted by a quantity 0 

c'), the domain 2 with respect to CRC' Is however 
E). If EIIG' denotes aome line lying within the domain 

2, Its equation may be written a8 

n = ET (S,E) == E'P,, (S) + . . . (2.2) 

We take an expanaion of the type 

j = jo (s, N) + Ejl (s, Nl + . . ., N = [n - q (s, 41 e-? (2.3) 

within the shock (domain 2 in Fig.1). 
In [l] we had N = mm2. This la the "Internal" eXPan8ion. 
Let us a85ume that Fc(8,n), &(8,n),... 

by asymptotic power series in n aa n-0, 
In domains 1,3 Flg.lare represented 

then from (2.1) for small n we obtain 

j = [F, (s) f Fe1 (8) n + . . .] + e .[F,, (s) i- FI1 (s) n + . . -1 + . . . (2.4) 

After Passage from n to N and regrouping terms of the series (2.4),we have 

f = Woo (41 + e IFI, (4 f Fcl W(po WJ + . . . (2.5) 

The expanalon (2.5) should represent 4 for large N and small n (the condl- 
tion of"matchlng" of the "internal" and external expansions. 

It follows from (2.5) that the "lnternaln expansion should have the form 
(2.3) and 

fo - FOCI+ (4, jl --z Flo+ (s) + Felt (4 ‘PO (s)* N-++ca (2.6) 
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fo + Foe- (4 f1+ FlO’ (4 + pm- (4 ‘PO (4, Nj-ce 6021;:) . 

31 The subsequent procedure 1s no different from that In Cl]. The 
Navler-Stokes equations are transformed to the N and e varlables,taklng Into 
account that 

af af I I as, -K-N 
- &$t&)&) (3.1) 

wherein the ex anslons (2.3) are substituted; systems of equations for the 
lob,N) and &,N) are obtained by equat coefficients of identical owers 
of c . If we u8e notation {f) = (j) 

E: 
-( l-RI then exaotly as In P II, 

by taking account of (2.61, we o &‘,“from &&<mdystems of equations 

(POVO) = 0, (a01 = 0, (povo% + pa) = 0, 
1 
$+++, T=& 

(Pov1+ PlVO - cpduopo} = 0, (ul+ vocpd} =o&(+ $dPI)+.ll(.,-uo~ot~~:o 

@Povow f Plf-JOS + p1) = 0, 

Here according to (2.6) 
(3.2) 

fo = Fw @I= &&-*o, !I = Flo (4 + FOI (4 cpo (4 = (FI + ‘2 ‘PO)_ 
Here f = p, P, u, u {f) = (f),,+o - (fl,,-,. The relations (3.1) are the cus- 

tomary conditions on a strong discontinuity In the lnvlscld problem.The rela- 
tions (3.2) differ from those ln 111 by the additional terms containing Wo 
and by the fact that (fi)lv,rtoo = (FL*0 are replaced 

Exactly as In [l],Equatlons (3.2) agree with those conditions which are 
obtained If It 1s assumed that the shock Is a mathematical aUrfaCe n=crpo(e). 

4. The flow In domain 1 of Fig.1 is not mown to accuracy 0 
Vance. The conditions for pel;nturbatlon,damplng as x - - (see c 1 
arbitrary, u1 ,v, as N - - - - - O), and ps .pl are connected by means of 
the relations 

PI Pl -_ 
po --5c 

plz-_ (~1 sin 0 + u1 cos 0) (4-l) 

The relations (3.1), (3.2) and (4.1) on the shock have been obtained under 
very general assumptions. To determine p1 ,pI ,ul ,vl uniquely from them it 1s 
neceseary to know u1 ,vl for n= - 0 and cpo (the parameters of the lnvlscld 
problem are considered known). Apparently these relations do not permit a 
unique determination of the quantities with subscript 1 in the transonlc do- 
main cl], hence,lt Is necessary to make additional assumptions. Here are the 
following fundamental posslbllltles: 

Version 1. We assume that u1 =vI I 0 for n- - 0; from (4,.1) It follows 

p1= p1= Tl = 0 for II = - 0 

Version 2. We assume that rpo=O 
Version 3. We assume that at n= - 0 

111 = Fl@J, cp’o,...), VI = FB@O, qD’o,.*.) 
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where Fl ,F, are some functions of their arguments. 
The first version Is the most attractive. Here, as a consequence of 

LQ =v, -p, -pl -T, -0 for n- - 0, we obtain that there are no O(E) perturbations 
ahead of the shock, the conditions on the shock agree with the conditions 
obtained by the perturbation method from the conditions on the shock In the 
Invlscld problem. And the whole problem of determining u ,vl,p,pl,T1 agrees 
with the problem of determining the lnvlscld flow pertur atlons b around a 
blunt body,whose surface has been changed slIghtly,If the method of formal 
expansion in powers of t Is used. 

However, the example presented In the Vagllo-Laurln paper [33 (a profile 
In transonic flow) and his investigation of the problem of flow past a blunt 
body by the integral relations method show that linear systems, obtained by 
formal expansions in powers of a small parameter, to determine perturbations 
In the case of transonlc problems may possess solutions whose derivative8 
become inilnlte on some line8 in c he tranaonlc domain. 

In order to obtain a smoother solution, the boundary conditions may be 
weakened. For example, l? the Trlooml problem is solved for the Trlcoml equa- 
tion, but we specl?y the desired function on the second characteristic, then 
a solution of the problem is possible, but in a Class of functions having 
dlscontlnultlts of the ilrst dtrlvativts on the pardbollc line. To eliminate 
this dlscontlnulty,lt ia required that the boundary condition be eliminated 
from the second characteristic. 

Being guided by similar conaldtratlons, the author conaldered‘ the second 
version In [l] where one condition less Is obtalntd on the shock than In the 
first version, and there are O(c) perturbations ahead of the chock. The quea- 
tlon of the existence and uniqueness of the transonlc problem,wIth conditions 
of the second version on the shock,rtmalntd open. An indirect argument In 
favor of the second vtrslon in [l] was the correctness of the computations 
by the metnod of charact.erl&lc~ in the supersonic part of the flow. 

However, an Investigation ?or a wedge (at some dl8tance from the vertex), 
where the solution had eucctssfully been obtalntd in analytic ?qria,showed 
that the conditions on the shock In the second versgon art ri& sufficient for 
uniqueness of the solution In the suptrzonic part of the flow. It hence fol- 
lows that the method of characterlstlos, In the form proposed In [ 13, Is not 
correct. 

In this cowxctlon, It may be assumed that it is necessary to utilize the 
condition8 on the shock in the second version in the trannonlc domain, and 
the conditions of the first version a?ttr the limiting characteristics. But 
such a conatructlon, although possible, stem6 artlflclal to the author, and 
therefore, he dots not u8t the conditions of the second version. The correct 
solution of the problem wall evidently be the ?ollowlng. 

Conditions on the shock In the first version should be utilized. If a sin- 
gular line occura, In the transonlc domain, it will be necessary to Introduce 
a auppltmentaryintermediatttxpnns1on In t in It6 neighborhood. It Is also 
necessary to elucidate’ how’valid Is the assumption ulm u - 0 (p,- pi- T - 0) 
at n- - 0. The assumption of the third version, In which there are O(c) ptr- 
turbatlons ahead of the ahock, IS more general. 

In conclusion, the author would like to turn attention to the ?ollowIng. 
Nonlinear lnvlscld gas,equatlone are often utlllztd to find the gas flow ptr- 
turbatlons because of the velocity of displacement, but the body contbur la 
altered correspondingly. Evidently linear equations ?or the perturbations 
should be utilized since, a8 the examples in (33 rhow, the results of solving 
nonlinear and linear systems for the perturbations may differ substantially 
PM the tpansonlc problema. 
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